RSSB

Rajasthan Staff Selection Board

Basic Computer Instructor
Examination, 2022

COMPUTER
SCIENCE

Comprehensive theory in lucid language with practice questions

Also useful for Senior Computer Instructor Examination

Publications

www.madeeasypublications.org




N=

MADE ERSY
Publications

MADE EASY Publications Pvt. Ltd

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016
E-mail: infomep@madeeasy.in
Contact: 011-45124660, 08860378007

Visit us at: www.madeeasypublications.org

Rajasthan Staff Selection Board (RSSB) :

Basic Computer Instructor Examination, 2022 (Paper-II)

Copyright © by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or
otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2022

MADE EASY PUBLICATIONS Pvt. Ltd. has taken due care in collecting the data and providing the solutions, before publishing this
book. Inspite of this, if any inaccuracy or printing error occurs then MADE EASY PUBLICATIONS owes no responsibility. MADE EASY
PUBLICATIONS will be grateful if you could point out any such error. Your suggestions will be appreciated.

© Allrights reserved by MADE EASY PUBLICATIONS Pvt. Ltd. No part of this book may be reproduced or utilized in any form without
the written permission from the publisher.



Preface

The compilation of this book is motivated by the desire
to provide a concise book which can benefit students
who are preparing for Basic Computer Instructor
Examination conducted by Rajasthan Staff Selection

Board (RSSB).

. . ) B. Singh (Ex. IES)
This textbook provides all the requirements of the

students, i.e. comprehensive coverage of Computer

Science topics with objective practice questions articulated in a lucid language.
This book is also useful for Senior Computer Instructor as well as an array of similar
competitive examinations. All the topics are given the emphasis they deserve so that

mere reading of the book helps aspirants immensely.

Our team has made their best efforts to remove all possible errors of any kind.
Nonetheless, we would highly appreciate and acknowledge if you find and share with

us any printing and conceptual errors.

Itis impossible to thank all the individuals who helped us, but we would like to sincerely
thank all the authors, editors and reviewers for putting in their efforts to publish this

book.

With Best Wishes
B. Singh
CMD, MADE EASY Group



10.

1.

CONTENTS

Computer Science

Computer Science Pedagogy ... 1
Fundamentals of CoOmMPUEEN ... 15
DAta PrOCESSING ... 37
Programming FUNdamentalS.......e e 83
Computer Organization & Operating SysStems.......coceveeeeceiene. 102
Data Structure and AlGoritAMIS ... 146
Database Management SYSTEM ... e 164
System Analysis and DeSIgN...... e 201
Communication & Network CONCEPLES ..o 223
NEEWOPRK SECUPIEY ..ottt 238
Internet of Things & its ApplicatioNs ... 262

(iv)



Data Structure

and Algorithms

m Definition of Algorithms

An algorithm is a bunch of self-contained succession
of guidelines or activities that contain limited space
or grouping such that it will give us an outcome to a
particular issue in a limited measure of time.

A good algorithm ought to be advanced in phrases
of time and space. Thus, various sorts of issues
require various kinds of algorithmic-strategies to be
illuminated in the most improved way.

Types of Algorithms

1.

Brute Force Algorithm: A brute force algorithm
essentially attempts all the chances until an
acceptable result is found. This is the most
fundamental and least complex type of algorithm.
Such types of algorithms are moreover used to
locate the ideal or best solution as it checks all
the potential solutions.

Also, it is used for finding an agreeable solution
(not the best), basically stopping when an answer
to the issue is found. It is a clear way to deal with
an issue that is the first approach that strikes our
mind after observing the issue.

Recursive Algorithm: This type of algorithm depends
on recursion. In recursion, an issue is comprehended
by breaking it into subproblems of a similar kind and
calling itself over and over until the issue is unravelled
with the assistance of a base condition.

It solves the base case legitimately and afterwards
recurs with a more straightforward or simpler
input every time. It is used to take care of the
issues which can be broken into less complex or
more modest issues of the same sort.

Dynamic Programming Algorithm: This type
of algorithm is also called the memoization
technique. This is because, in this, the thought
is to store the recently determined outcome to try
not to figure it over and over.

In Dynamic  Programming, partition the
unpredictable issue into more modest covering
subproblems and putting away the outcome for
sometime later. In simple language, we can say
that it recollects the previous outcome and uses
it to discover new outcomes.

Divide and Conquer Algorithm: In the Divide and
Conquer algorithm, the thought is to tackle the
issue in two areas, the first section partitions
the issue into subproblems of a similar sort. The
second section is to tackle the more modest
issue autonomously and afterwards add the
joined outcome to create the last response to the
issue.

Greedy Algorithm: Now coming towards another
type that is a greedy algorithm, so in this, the
solution is created portion by portion. The finding
to select the following role is accomplished on the
purpose that it provides the sudden help and it
never deems the options that had assumed lately.

Backtracking Algorithm: In this type of algorithm,
the issue is worked out steadily, for example, it
is an algorithmic-procedure for taking care of
issues recursively by attempting to construct an
answer steadily, each piece, in turn, eliminating
those solutions that neglect to fulfil the conditions
of the situation at any point of time.

Randomized Algorithm: In this type of algorithm,
a random number is taken for deciding at least
once during the computations.



MADE ERSY

Data Structure and Algorithms

Characteristics of an algorithm

There are some characteristics that every algorithm
should follow and here is the list of some of them
which we will see one by one.

1.

Input specified: The input is the information to
be changed during the calculation to create the
output. An algorithm ought to have at least O all
around characterized inputs. Input exactness
necessitates that you understand what sort of
information, how much and what structure the
information should be.

Output specified: The output is the information
coming about because of the calculation. An
algorithm ought to have at least 1 all around
characterized outputs, and should coordinate
the ideal output. Output exactness likewise
necessitates that you understand what sort of
information, how much and what structure the
output should be.

Clear and Unambiguous: Algorithms must
determine each step and each of its steps should
be clear in all behaviours and must direct to only
one meaning. That's why the algorithm should
be clear and unambiguous. Details of each step
must be likewise be explained (counting how to
deal with errors). It ought to contain everything
quantitative and not subjective.

Feasible: The algorithm should be effective which
implies that all those means that are needed to
get to output must be feasible with the accessible
resources. It should not contain any pointless and
excess advances which could make an algorithm
ineffectual.

Independent: An algorithm should have step by
step directions, which should be independent of
any programming code. It should be with the end
goal that it very well may be a sudden spike in
demand for any of the programming dialects.

Finiteness: The algorithm must quit, eventually.
Stopping may imply that you get the normal output.
Algorithms must end after a limited number of
steps. An algorithm should not be boundless and
consistently end after a finite number of steps.
There is no reason for building up an algorithm
that is limitless as it will be pointless for us.

Important Algorithms for problem solving

1.

Searching Algorithms: A search algorithm is an
algorithm which solves a search problem. Search
algorithms work to retrieve information stored
within some data structure, or calculated in the
search space of a problem domain, with either
discrete or continuous values. Examples :- Linear
Search, Binary Search, Ternary Search.

Sorting Algorithms: A Sorting Algorithm is used to
rearrange a given array or list elements according
to a comparison operator on the elements. The
comparison operator is used to decide the new
order of element in the respective data structure.
Examples :- Quick sort, insertion sort, merge sort,
selection sort, bubble sort, radix sort, counting
sort, etc.

Divide and conquer based algorithms: This technique
can be divided into the following three parts:

¢ Divide: This involves dividing the problem into
smaller sub-problems.

e Conquer: Solve sub-problems by calling

recursively until solved.

e Combine: Combine the sub-problems to get
the final solution of the whole problem.

Examples: Binary search, merge sort, quick
sort, ternary search, etc

Greedy Algorithms: Greedy is an algorithmic
paradigm that builds up a solution piece by
piece, always choosing the next piece that offers
the most obvious and immediate benefit. So the
problems where choosing locally optimal also
leads to global solution are best fit for Greedy.
Examples :- Kruskal’s algorithm, Prim’s algorithm,
Dijkstra’s  algorithm,  Fractional  knapsack
problem, Activity selection problem, Huffman

coding, Job sequencing problem, etc.

Dynamic Programming based algorithms: Dynamic
Programming is mainly an optimization over plain
recursion. Wherever we see a recursive solution
that has repeated calls for same inputs, we can
optimize it using Dynamic Programming. The

147



148

RSSB : Basic Computer Instructor Examination

Computer Science MADE ERSY

idea is to simply store the results of subproblems,
so that we do not have to re-compute them when
needed later. This simple optimization reduces
time complexities from exponential to polynomial.
Examples: Bellman Ford algorithm, Fibonacci
series,
Longest common subsequence problem, 0/1
knapsack problem, etc. following are the two

Matrix Chain multiplication problem,

main properties of a problem that suggest that

the given problem can be solved using Dynamic

programming:

e Overlapping  Subproblems: In dynamic
programming, computed solutions to subproblems
are stored in a table so that these don’t have to be
recomputed thus reducing the time substantiallly.

e Optimal Substructure: A given problems has
Optimal Substructure Property if optimal
solution of the given problem can be obtained
by using optimal solutions of its subproblems.

Abstract Data Types

The Data Type is basically a type of data that can be
used in different computer program. It signifies the
type like integer, float etc, the space like integer will
take 4-bytes, character will take 1-byte of space etc.

The abstract datatype is special kind of datatype,
whose behavior is defined by a set of values and set
of operations. The keyword “Abstract” is used as we
can use these datatypes, we can perform different
operations. But how those operations are working that
is totally hidden from the user. The ADT is made of with
primitive datatypes, but operation logics are hidden.

Some examples of ADT are Stack, Queue, List etc.

Let us see some operations of those mentioned ADT

Stack:
e isFull(), This is used to check whether stack is full
or not

e iskmpty(), This is used to check whether stack is
empty or not

e push(x), This is used to push x into the stack

e pop(), This is used to delete one element from
top of the stack

e peek(), This is used to get the top most element
of the stack

e size(), this function is used to get number of
elements present into the stack

Queue:

e sFull(), This is used to check whether queue is
full or not

e isEmpty(), This is used to check whether queue is
empty or not

e insert(x), This is used to add x into the queue at
the rear end

e delete(), This is used to delete one element from
the front end of the queue

e size(), this function is used to get number of
elements present into the queue

List:
e size(), this function is used to get number of
elements present into the list

e insert(x), this function is used to insert one
element into the list

e remove(x), this function is used to remove given
element from the list

e get(i), this function is used to get element at
position i

e replace(x, y), this function is used to replace x
with y value

Different types of data structures

Arrays

An array is a sequential collection of elements of same
data type and stores data elements in a continuous
memory location. The elements of an array are
accessed by using an index. The index of an array of
size N can range from 0 to N-1. For example, if your
array size is 5, then your index will range from 0 to 4
(5-1). Each element of an array can be accessed by
using arr[index].

Declaring an array is language-specific.

For example, in C/C++, to declare an array, you must
specify, the following:



MADE ERSY

Data Structure and Algorithms

e Size of the array: This defines the number of
elements that can be stored in the array.

e Type of array: This defines the type of each element
i.e. number, character, or any other data type.
For example:
int arr[10];
The above declares an array named “arr” which
stores values of type integer and the total size of
the array is 10 integer elements.

This is a static array and the other kind is dynamic
array, where type is just enough for declaration. In
dynamic arrays, size increases as more elements
are added to the array.

Dynamic declaration of a 1-Dimensional array:
int * ptr; // This is a pointer of type integer.
ptr=(int*)  malloc(10*sizeof(int)); // malloc
allocates memory equaling 10 integer elements
and passes the starting address of this block of
memory to ptr.

2-Dimensional Arrays

A two-dimensional array is similar to a one-
dimensional array, but it can be visualised as a grid
(or table) with rows and columns.

For example, a nine-by-nine grid could be referenced

with numbers for each row and letters for each

column. A nine-by-nine, two-dimensional array could

be declared with a statement such as:

e arr[9][9]; // arr contains 9 rows and 9 columns
ranging from O to 8.

e Another way to declare a 2-dimensional array
with initial values is as follows :-

e int[][] myArray ={ {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10,
11,12}, {13, 14, 15, 16} };

Linked List Data structure

A linked list is a linear data structure that includes a
series of connected nodes. Here, each node stores
the data and the address of the next node.

cad Singly linked list

e
—

Data Next

The above is the most simplest form of linked list
called a singly linked list. Head is the starting node
of the linked list. Each node contains a data element
and a pointer which points to the next node. Linked
list are useful when data is to be stored in non-
contiguous memory locations.

Types of Linked List: There are three common types
of Linked List.

1. Singly Linked List - Already covered above.
2. Doubly Linked List

3. Circular Linked List

4. Circular Doubly Linked List

Doubly Linked List

Head Tail
e I E=d e = ME= A =4
Node1 Node2 Node3 Node4 Node5 Null

In a doubly linked list, each node contains two
pointers instead of one. The previous pointer points
to the previous node and the next pointer points to
the next node. This allows us to travel in forward as
well as backward direction in a doubly linked list. The
previous pointer of the first node and the next pointer
of the last node should be assigned NULL value.

Circular Linked List

Data E—{ Data NextH Data Next]
!

A circular linked list is a variation of a linked list in
which the last element is linked to the first element.
This forms a circular loop.

Head

Circular Doubly Linked List

Start

Next Next J
\% [oae] F-_—[ Tose] §-_—[Toas I

In a circular doubly linked list, the next pointer of

the last member points to the first member and the
previous pointer of the first member points to the
last member in addition to the features present in a
doubly linked list.

149



150

RSSB : Basic Computer Instructor Examination

Computer Science MADE ERSY

Singly linked list Real time | Assumed time
operation complexity | complexity

Access i-th element | O(YN * N) O(N)
Traverse all elements O(\N * N) O(N)
Insert element E at O(1) O(1)
current point

Delete current element O(1) O(1)
Insert element E at front O(1) O(1)
InsertelementEatend | O(VN * N) O(N)

X Stack

Stackisanabstractdatatypewithabounded(predefined)
capacity. Itis a simple data structure that allows adding
and removing elements in a particular order. Every time
an element is added, it goes on the top of the stack and
the only element that can be removed is the element
that is at the top of the stack, just like a pile of objects.

Properties of stack

Stack is an ordered list of similar data type.

2. Stack is a LIFO(Last in First out) structure or we
can say FILO(First in Last out).

3. push() function is used to insert new elements into
the Stack and pop() function is used to remove an
element from the stack. Both insertion and removal
are allowed at only one end of Stack called Top.

4. Stack is said to be in Overflow state when it is
completely full and is said to be in Underflow
state if it is completely empty.

Stack can be easily implemented using an Array or a
Linked List. Arrays are quick, but are limited in size
and Linked List requires overhead to allocate, link,
unlink, and deallocate, but is not limited in size. Here
we will implement Stack using array.

Below mentioned are the time complexities for various

operations that can be performed on the Stack data

structure.

e Push Operation : Insert an element at the top of
the stack. O(1)

e Pop Operation : Deletes an element from the top
of the stack. O(1)

Top Operation : Returns the element present at
the tpo of the stack. O(1)

e Search Operation : Searches a particular element
in the stack. O(n)

The time complexities for push() and pop() functions
are O(1) because we always have to insert or remove
the data from the top of the stack, which is a one step
process.

I o

Queue is also an abstract data type or a linear data
structure, just like stack data structure, in which the
first element is inserted from one end called the
REAR(also called tail), and the removal of existing
element takes place from the other end called as
FRONT(also called head).

Properties of a queue

e Queue is a FIFO data structure which is also
called as First In First Out. This means that the
element which is inserted first in the queue data
structure should be the first one to be deleted.

e | ke stack, queue is also an ordered list of
elements of similar data types.

e Once a new element is inserted into the Queue,
all the elements inserted before the new element
in the queue must be removed, to remove the
new element.

Operations performed on a queue

® Enqueue: This operation inserts a new element at
the rear position in the queue. This takes O(1) time.
e Dequeue: This operation deletes an element from
front position of the queue. This takes O(1) time.

Applications of a queue

e Serving requests on a single shared resource,
like a printer, CPU task scheduling etc.

e In real life scenario, Call Center phone systems
uses Queues to hold people calling them in an
order, until a service representative is free.

e Handling of interrupts in real-time systems. The
interrupts are handled in the same order as they
arrive i.e First come first served.



MADE ERSY

Data Structure and Algorithms

Queue can be implemented using an array, stack
or Linked List. The easiest way of implementing a
queue is by using an Array.

Different types of queues

There are four different types of queues:

e Simple Queue: In a simple queue, insertion takes
place at the rear and removal occurs at the front.
It strictly follows the FIFO (First in First out) rule.

e C(Circular Queue: In a circular queue, the last
element points to the first element making a
circular link.

* Priority Queue: A priority queue is a special type
of queue in which each element is associated
with a priority and is served according to its
priority. If elements with the same priority
occur, they are served according to their order
in the queue.

e Double Ended Queue: In a double ended queue,
insertion and removal of elements can be
performed from either from the front or rear. Thus,
it does not follow the FIFO (First In First Out) rule.

Binary Tree

Abinary tree is a tree-type non-linear data structure with
a maximum of two children for each parent. Every node
in a binary tree has a left and right reference along with
the data element. The node at the top of the hierarchy
of a tree is called the root node. The nodes that hold
other sub-nodes are the parent nodes.

A parent node has two child nodes: the left child and
right child. Hashing, routing data for network traffic,
data compression, preparing binary heaps, and
binary search trees are some of the applications that
use a binary tree.

Root node

Left branch Right branch

Parent node

Child node Child node

Height of a tree

Leaf nodes

Leaf nodes

e Node: It represents a termination point in a tree.
e Root: A tree’s topmost node.

e Parent: Each node (apart from the root) in a tree
that has at least one sub-node of its own is called
a parent node.

e Child: A node that straightway came from a parent
node when moving away from the root is the child
node.

e Leaf Node: These are external nodes. They are
the nodes that have no child.

e Internal Node: As the name suggests, these are
inner nodes with at least one child.

e Depth of a Tree: The number of edges from the
tree’s node to the root is.

e Height of a Tree: It is the number of edges from
the node to the deepest leaf. The tree height is
also considered the root height.

Types of Binary trees

e FullBinaryTree: It is a special kind of a binary tree that
has either zero children or two children. It means that
all the nodes in that binary tree should either have two
child nodes of its parent node or the parent node is
itself the leaf node or the external node.

In other words, a full binary tree is a unique binary
tree where every node except the external node
has two children. When it holds a single child,
such a binary tree will not be a full binary tree.
Here, the quantity of leaf nodes is equal to the
number of internal nodes plus one. The equation
is like L=1+1, where L is the number of leaf nodes,
and | is the number of internal nodes.

e Complete Binary Tree: A complete binary tree is
another specific type of binary tree where all the
tree levels are filled entirely with nodes, except
the lowest level of the tree. Also, in the last or the
lowest level of this binary tree, every node should
possibly reside on the left side.

e Perfect Binary Tree: A binary tree is said to be
‘perfect’ if all the internal nodes have strictly two
children, and every external or leaf node is at the
same level or same depth within a tree. A perfect
binary tree having height ‘h’ has 2h — 1 node.

151



152

RSSB : Basic Computer Instructor Examination

Computer Science MADE ERSY

e Balanced Binary Tree: A binary tree is said to be
‘balanced’ if the tree height is O(logN), where
‘N’ is the number of nodes. In a balanced binary
tree, the height of the left and the right subtrees
of each node should vary by at most one. An AVL
Tree and a Red-Black Tree are some common
examples of data structure that can generate a
balanced binary search tree.

e Degenerate Binary Tree: The degenerate binary
tree is a tree in which all the internal nodes have
only one children. A degenerate binary tree can
be either left-skewed tree (when all nodes have
only left child) or a right-skewed tree (when all
nodes have only right child).

Properties of a Binary Tree

e At each level of i, the maximum number of nodes
is 2L,

e The height of the tree is defined as the longest
path from the root node to the leaf node. The
tree which is shown above has a height equal to
3. Therefore, the maximum number of nodes at
height 3 is equal to (1+2+4+8) = 15. In general,
the maximum number of nodes possible at height
his (2° + 2" + 22+....2") = 2+" 1,

e The minimum number of nodes possible at height
his equal to h+1.

e |fthe number of nodes is minimum, then the height
of the tree would be maximum. Conversely, if the
number of nodes is maximum, then the height of
the tree would be minimum.

Tree Traversals

Tree traversal means traversing or visiting each node
of a tree. Linear data structures like Stack, Queue,
linked list have only one way for traversing, whereas
the tree has various ways to traverse or visit each
node. The following are the three different ways of
traversal:

1. Inorder traversal

2. Preorder traversal

3. Postorder traversal

1. Indorder Traversal: An inorder traversal is a
traversal technique that follows the policy, i.e.,
Left Root Right. Here, Left Root Right means that
the left subtree of the root node is traversed first,
then the root node, and then the right subtree of
the root node is traversed. Here, inorder name
itself suggests that the root node comes in
between the left and the right subtrees.

2. Preorder Traversal: A preorder traversal is a
traversal technique that follows the policy, i.e.,
Root Left Right. Here, Root Left Right means root
node of the tree is traversed first, then the left
subtree and finally the right subtree is traversed.
Here, the Preorder name itself suggests that the
root node would be traversed first.

3. Postorder Traversal: A Postorder traversal is a
traversal technique that follows the policy, i.e., Left
Right Root. Here, Left Right Root means the left
subtree of the root node is traversed first, then the
right subtree, and finally, the root node is traversed.
Here, the Postorder name itself suggests that the
root node of the tree would be traversed at the last.

Binary Search Trees

A Binary Search Tree (BST) is a tree in which all the

nodes follow the below-mentioned properties —

e The value of the key of the left sub-tree is less
than the value of its parent (root) node’s key.

e The value of the key of the right sub-tree is
greater than or equal to the value of its parent
(root) node’s key.

BST is a collection of nodes arranged in a way where
they maintain BST properties. Each node has a
key and an associated value. While searching, the
desired key is compared to the keys in BST and if
found, the associated value is retrieved.

Following is a pictorial representation of BST:



MADE ERSY

Data Structure and Algorithms

AVL Tree

AVL Tree can be defined as height balanced binary
search tree in which each node is associated with
a balance factor which is calculated by subtracting
the height of its right sub-tree from that of its left
sub-tree.

Tree is said to be balanced if balance factor of each
node is in between -1 to 1, otherwise, the tree will be
unbalanced and need to be balanced.

Balance Factor (k) = height (left(k)) - height (right(k))

e |f balance factor of any node is 1, it means that
the left sub-tree is one level higher than the right
sub-tree.

e |f balance factor of any node is 0, it means that
the left sub-tree and right sub-tree contain equal
height.

e |f balance factor of any node is -1, it means that
the left sub-tree is one level lower than the right
sub-tree.

AVL tree controls the height of the binary search
tree by not letting it to be skewed. The time taken for
all operations in a binary search tree of height h is
O(h). However, it can be extended to O(n) if the BST
becomes skewed (i.e. worst case). By limiting this
height to log n, AVL tree imposes an upper bound on
each operation to be O(log n) where n is the number
of nodes.

We perform rotation in AVL tree only in case if Balance

Factor is other than -1, 0, and 1. There are basically

four types of rotations which are as follows:

1. LLrotation: Inserted node is in the left subtree of
left subtree of A

2. RRrotation: Inserted node is in the right subtree
of right subtree of A

3. L Rrotation: Inserted node is in the right subtree
of left subtree of A

4. RLrotation: Inserted node is in the left subtree of
right subtree of A

Where node A is the node whose balance Factor is
other than -1, 0, 1.

1. RR Rotation: When BST becomes unbalanced,
due to a node is inserted into the right subtree
of the right subtree of A, then we perform RR
rotation, RR rotation is an anticlockwise rotation,
which is applied on the edge below a node
having balance factor 2.

=> (&)
@ ® O

Right unbalanced Left
tree rotation

Balanced

2. LL Rotation: When BST becomes unbalanced,
due to a node is inserted into the left subtree
of the left subtree of C, then we perform LL
rotation, LL rotation is clockwise rotation, which
is applied on the edge below a node having
balance factor 2.

°
® = @ = @
@ O @ ©

Left unbalanced Rightrotation

Balanced tree
tree

3. LR Rotation: Double rotations are bit tougher
than single rotation which has already explained
above. LR rotation = RR rotation + LL rotation,
i.e., first RR rotation is performed on subtree
and then LL rotation is performed on full tree, by
full tree we mean the first node from the path of
inserted node whose balance factor is other than
-1,0,0r 1.

4. RL Rotation: As already discussed, that double
rotations are bit tougher than single rotation which has
already explained above. RL rotation = LL rotation +
RR rotation, i.e., first LL rotation is performed on
subtree and then RR rotation is performed on full
tree, by full tree we mean the first node from the
path of inserted node whose balance factor is other
than -1, 0, or 1.

153



154

RSSB : Basic Computer Instructor Examination

Computer Science MADE ERSY

BST operation time complexity analysis

Operation Best case Worst case
Search O(log n) O(n)
Insert O(log n) O(n)
Delete O(log n) O(n)

In best case, the Binary Search tree is similar to a
complete binary tree (Balanced tree). In worst case,
the Binary Search tree can be either completely
skewed towards the left or the right.

AVL tree operation time complexity analysis

Operation Average Case Worst case
Space O(n) O(nW)
Search O(log n) O(log n)
Insert O(log n) O(log n)
Delete O(log n) O(log n)

m Graphs and its representation

The graph is a non-linear data structures. This
represents data using nodes, and their relations
using edges. A graph G has two sections. The
vertices, and edges. Vertices are represented using
set V, and Edges are represented as set E. So the
graph notation is G(V,E). A graph can be classified
in different categories:

1. Directed Graphs: A directed graph, also called a
digraph, is a graph in which the edges have a
direction. This is usually indicated with an arrow
on the edge.

2. Undirected Graphs: An undirected graph is graph,
i.e., asetof objects (called vertices or nodes) that
are connected together, where all the edges are
bidirectional. An undirected graph is sometimes
called an undirected network.

3. Simple Graph: A simple graph is a graph which
does not contains more than one edge between
the pair of vertices.

4. Multi Graphs: A graph in which multiple edges
may connect the same pair of vertices is called
a multigraph. Since there can be multiple edges

between the same pair of vertices, the multiplicity of
edge tells the number of edges between two vertices.

5. Weighted Graphs: A weighted graph is a graph
in which each edge is given a numerical weight.
A weighted graph is therefore a special type of
labeled graph in which the labels are numbers
(which are usually taken to be positive).

o

Unweighted Graphs: An unweighted graph is a

graph in which every edge is equally weighted

i.e., there are no edge weights on any of the

edges.

7. Connected Graph: A connected graph is an
undirected graph where there is a path present
between every pair of vertices.

8. Disconnected Graph: An undirected graph in

which there exists atleast 1 pair of vertices which

do not have a path between them is called as a

disconnected graph.

9. Complete Graph: A simple graph of n vertices
having exactly one edge between each pair of
vertices is called a complete graph. A complete
graph of nvertices is denoted by K . Total number
of edges are n*(n-1)/2 with n vertices in complete

graph.

The graphs are non-linear, and it has no regular
structure. To represent a graph in memory, there are
few different styles. These styles are:

e Adjacency matrix representation: We can represent
a graph using Adjacency matrix. The given matrix
is an adjacency matrix. It is a binary, square matrix
and from ith row to jth column, if there is an edge,
that place is marked as 1. When we will try to
represent an undirected graph using adjacency
matrix, the matrix will be symmetric.

e Adjacency List representation: This is another type
of graph representation. It is called the adjacency
list. This representation is based on Linked Lists.
In this approach, each Node is holding a list
of Nodes, which are Directly connected with
that vertices. At the end of list, each node is
connected with the null values to tell that it is the
end node of that list.



MADE ERSY

Data Structure and Algorithms

155

a b w N =
AININ]|~DN
|
1]

1 2 3 4 5

I[5]7 1o 1 0o o 1
5] 3] P4]/] 2|1 0o 1 1 1
4l 3o 1 0 1 o0
5] 3] 40 1 1 0 1
1 2] 51 1 0 1 o0

(b)

(c)

Figure (a) represents an undirected connected graph. Figure (b) represents the corresponding adjacency list

representation for the given graph. Figure (c) represents the corresponding adjacency matrix representation

for the given graph.

Searching and Sorting

In this section we are going to discuss widely used
searching and sorting algorithms. The underlying data
structure involved in all these algorithms will be arrays.

Linear Search

Linear search is a very simple search algorithm. In
this type of search, a sequential search is made over
all items one by one. Every item is checked and if a
match is found then that particular item is returned,
otherwise the search continues till the end of the data

collection.

Algorithm

Linear Search ( Array A, Value x)

Step 1 Setito 1

Step 2 ifi >nthen gotostep 7
Step 3 if A[i] = x then go to step 6
Step 4 Setitoi+ 1

Step 5 Go to Step 2

Step 6 Print Element x Found at index i and go
to step 8

Step 7 Print element not found
Step 8 Exit

Time Complexity for Linear Search
Best Case - O(1)

Average Case - O(n)

Worst case - O(n)

Binary Search

Binary search is the search technique that works
efficiently on sorted lists. Hence, to search an element
into some list using the binary search technique, we
must ensure that the list is sorted.

Binary search follows the divide and conquer
approach in which the list is divided into two halves,
and the item is compared with the middle element of
the list. If the match is found then, the location of the
middle element is returned. Otherwise, we search
into either of the halves depending upon the result
produced through the match.

Algorithm

binarySearch(arr, x, low, high)
if low > high
return False
else
mid = (low + high) /2
if x == arr[mid]
return mid
else if x > arr[mid] /l x is on the right side
return binarySearch(arr, x, mid + 1, high)
else /] x is on the right side

return binarySearch(arr, x, low, mid - 1)

Time Complexity for Binary Search

Given an array of n elements following are the time
complexities :-



156

RSSB : Basic Computer Instructor Examination

Computer Science MADE ERSY

Best case - O(1)
Average case - O(log n)
Worst case - O(log n)

Merge Sort

Merge sort is similar to the quick sort algorithm as
it uses the divide and conquer approach to sort the
elements. It is one of the most popular and efficient
sorting algorithm. It divides the given list into two
equal halves, calls itself for the two halves and then
merges the two sorted halves. We have to define the
merge() function to perform the merging.

The sub-lists are divided again and again into
halves until the list cannot be divided further. Then
we combine the pair of one element lists into two-
element lists, sorting them in the process. The sorted
two-element pairs is merged into the four-element
lists, and so on until we get the sorted list.

Algorithm
procedure mergesort( var a as array )
if (n==1)returna
var 11 as array = a[0] ... a[n/2]
var 12 as array = a[n/2+1] ... a[n]
1 = mergesort( 1)
|2 = mergesort( 12)
return merge( 11, 12)
end procedure
procedure merge( var a as array, var b as array )
var c as array
while (a and b have elements )
if (a[0] > b[0])
add b[0] to the end of ¢
remove b[0] from b

else
add a[0] to the end of ¢
remove a[0] from a
end if
end while

while (‘a has elements )

add a[0] to the end of ¢
remove a[0] from a
end while
while ( b has elements )
add b[0] to the end of ¢
remove b[0] from b
end while

Time Complexity for Merge sort

-Given an array of n elements, following are the time
complexities for different cases :-

Best case - O(n log n)

Average case - O(n log n)

Worst case - O(n log n)

Quick Sort

Quicksort is a sorting algorithm based on the divide
and conquer approach where
1. An array is divided into subarrays by selecting a

pivot element (element selected from the array).

While dividing the array, the pivot element should
be positioned in such a way that elements less
than pivot are kept on the left side and elements
greater than pivot are on the right side of the
pivot.

2. Theleftandright subarrays are also divided using
the same approach. This process continues until
each subarray contains a single element.

3. Atthis point, elements are already sorted. Finally,

elements are combined to form a sorted array.

Quick sort recursive Algorithm
quickSort(array, leftmostindex, rightmostindex)
if (leftmostindex < rightmostindex)

pivotindex <- partition(array,leftmostindex,
rightmostindex)

quickSort(array, leftmostindex, pivotindex - 1)
quickSort(array, pivotindex, rightmostindex)



MADE ERSY

Data Structure and Algorithms

Partition Algorithm

partition(array, leftmostindex, rightmostindex)
set rightmostindex as pivotindex
storelndex <- leftmostindex - 1

for i <- leftmostindex + 1 to rightmostindex

if element([i] < pivotElement

swap element[i] and element[storelndex]
storelndex++
swap pivotElement and element[storelndex+1]
return storelndex + 1

Time Complexity for Quick Sort

Given an array of n elements, following are the time
complexities for quick sort :-

Best case - O(n log n)
Average case - O(n log n)
Worst case - O(n?)

Bubble Sort

Bubble sort works on the repeatedly swapping of
adjacent elements until they are not in the intended
order. It is called bubble sort because the movement
of array elements is just like the movement of air
bubbles in the water. Bubbles in water rise up to the
surface; similarly, the array elements in bubble sort
move to the end in each iteration.

Although it is simple to use, it is primarily used as an
educational tool because the performance of bubble
sort is poor in the real world. It is not suitable for large
data sets.

Algorithm
1. begin BubbleSort(arr)
for all array elements
if arr[i] > arr[i+1]
swap(arr[i], arr[i+1])
end if
end for
return arr
end BubbleSort

©® N o 00k~ N

Time Complexity for Bubble sort

Consider an array of n elements and bubble sort is
applied to it. Following are the time complexities in
different scenarios :-

Best case - O(n) - When the array is already sorted.
Average case -

Worst case - O(n2)

Selection Sort

In selection sort, the smallest value among the
unsorted elements of the array is selected in every
pass and inserted to its appropriate position into the
array. Itis also the simplest algorithm. It is an in-place
comparison sorting algorithm. In this algorithm, the
array is divided into two parts, first is sorted part, and
another one is the unsorted part. Initially, the sorted
part of the array is empty, and unsorted part is the
given array. Sorted part is placed at the left, while the
unsorted part is placed at the right.

In selection sort, the first smallest element is
selected from the unsorted array and placed at the
first position. After that second smallest element is
selected and placed in the second position. The

process continues until the array is entirely sorted.

Algorithm

SELECTION SORT(arr, n)
Step 1: Repeat Steps 2 and 3 for i = 0 to n-1
Step 2: CALL SMALLEST(arr, i, n, pos)
Step 3: SWAP arr[i] with arr[pos]
[END OF LOOP]
Step 4: EXIT

SMALLEST (arr, i, n, pos)
Step 1: [INITIALIZE] SET SMALL = arr[i]
Step 2: [INITIALIZE] SET pos =i
Step 3: Repeat forj=i+1ton
if (SMALL > arr[j])
SET SMALL = arrlj]
SET pos = |
[END OF if]

157



158

RSSB : Basic Computer Instructor Examination

Computer Science MADE ERSY

17. [END OF LOOP]
18. Step 4. RETURN pos

Time complexity for Selection sort

Consider an array containing n elements. Following
are different scenarios with their time complexities :-
Best case - O(n?)

Average case - O(n?)

Worst case - O(n?)

Insertion Sort

Insertion sort works similar to the sorting of playing
cards in hands. It is assumed that the first card
is already sorted in the card game, and then we
select an unsorted card. If the selected unsorted
card is greater than the first card, it will be placed
at the right side; otherwise, it will be placed at the
left side. Similarly, all unsorted cards are taken and
put in their exact place.

The same approach is applied in insertion sort. The
idea behind the insertion sort is that first take one

element, iterate it through the sorted array.

Algorithm

The simple steps of achieving the insertion sort are

listed as follows -

Step-1:

If the element is the first element, assume that it is

already sorted. Return 1.

Step-2:

Pick the next element, and store it separately in a

key.
Step-3:

Now, compare the key with all elements in the sorted

array.

Step4:

If the element in the sorted array is smaller than the
current element, then move to the next element. Else,
shift greater elements in the array towards the right.

Step 5: Insert the value.
Step 6: Repeat until the array is sorted.

Time complexity for Insertion sort

Consider an array containing n elements. Following
are different scenarios with their time complexities.

Best case - O(n)
Average case - O(n?)

Worst case - O(n?)

m Stable and Inplace algorithms

A sorting algorithm is said to be stable if two objects
with equal keys appear in the same order in sorted
output as they appear in the input array to be sorted.

An inplace algorithm is one which does not require
an additional data structure, say array (apart from
the data structure in which the input is stored). This
additional data structure, if required, is part of the
auxiliary space. Another way to say this is an inplace
algorithm is one which has O(1) auxiliary space.

Algorithm ’ Stable ’

Inplace
Quick Sort No Yes
Merge Sort Yes No
Bubble Sort Yes Yes
Selection Sort No Yes
Insertion Sort Yes Yes




MADE ERSY

Data Structure and Algorithms

m Symbol Table

A symbol table is a data structure employed by a
language translator, like a compiler or interpreter,
within which each identifier in a program’s source

code is connected with information about its

declaration or presence in the source code, like its
type, scope level, and infrequently its position.

A symbol table is a significant data structure used in a
compiler that correlates characteristics with program
identifiers. The analysis and synthesis stages employ
symbol table information to verify that used identifiers
have been specified, to validate that expressions
and assignments are semantically accurate, and to

build intermediate or target code.

A symbol table’s basic operations are allocate, free,
insert, lookup, set attribute and get attribute. The
allocate operation assigns an empty symbol table. To
remove all records and free the storage of a symbol
table, free operation is used. The insert operation

as the name suggests inserts a name in a symbol

table and return a pointer to its entry. The lookup
function searches for a name and returns a pointer
to its entry. The set attribute and the get attribute
associate an attribute with a given entry and get an
attribute associated with a given respectively. Other
procedures might be added based on the needs. A
delete operation, for instance, removes a previously
entered name.

Following are the data structures which can be used
to implement a symbol table:

1. Linear List

2. Binary Search Tree

3. Hash Table

Items stored in Symbol table

e Variable names and constants

e Procedure and function names
e |jteral constants and strings

e Compiler generated temporaries

e | abels in source languages

159



160

Q.1

Q.2

Q3

Q4

Q.5

Q.6

Q.7

Q.8

RSSB : Basic Computer Instructor Examination

Computer Science

MADE ERSY

DATA STRUCTURES AND ALGORITHMS

Practice Questions

Which of the following uses FIFO method ?
(b) Stack
(d) Binary Search Tree

(a) Queue
(c) Hash Table

What data structure can be used to check if a
syntax has balanced paranthesis ?

(b) tree

(d) Stack

(a) queue
(c) list

If the array is already sorted, which of these
algorithms will exhibit the best performance

(a) Merge Sort
(c) Quick Sort

(b) Insertion Sort
(d) Heap Sort

Apriori algorithm analysis does not include
(a) Time Complexity

(b) Space Complexity

(c) Program Complexity

(d) None of the above

Which of the below mentioned sorting
algorithms are not stable?

(b) Bubble Sort

(d) Insertion Sort

(a) Selection Sort
(c) Merge Sort

Tower of Hanoi is a classic example of which
programming paradigm ?

(a) Divide And Conquer

(b) Greedy Algorithm

(c) Dynamic Programming
(d) Randomized Algorithms

Re-balancing of AVL tree costs

(@) (1) (b) (log n)

(c) (n) (d) (n?)

The worst case time complexity of AVL tree is

better in comparison to binary search tree for
(a) Search and insert operations

Q.9

Q.10

Q.11

Q.12

Q13

(b) Search and delete operations
(c) Insert and delete operations
(d) Search, insert and delete operations

Given an empty stack, after performing
push(1), push(2), pop, push(3), push(4), pop,
pop, push(b), pop. What is the value of the top
of the stack?
(a) 4

(c) 2

Given two sorted lists of size ‘m’ and ‘n’
respectively. The number of comparisons
needed in the worst case by the merge sort
algorithm will be
(a) m*n (b) max(m, n)

(c) min(m, n) (d) m+n-1

Find the number of minimum comparisons
required in the worst case to find both the
minimum and the maximum value among n
elements in an array.
(a) 2n-2

(c) floor(3n/2) - 2

(b) n-1
(d) 2n-logn

You have to sort a list L, consisting of a sorted
list followed by a few ‘random’ elements.
Which of the following sorting method would
be most suitable for such a task ?

(a) Bubble sort
(c) Quick sort

(b) Selection sort
(d) Insertion sort

Consider an array A[20. 10], assume 4 words
per memory cell and the base address of
array A is 100. What is the address of A[11,5]7
Assume row major storage.

(a) 560 (b) 565

(c) 570 (d) 575



MADE ERSY

Data Structure and Algorithms

Q.42

Q43

Q.44

Q.45

Which of the following statements is true”?

1. As the number of entries in a hash table
increases, the number of collisions
increases.

2. Recursive programs are efficient.

The worst case complexity for Quicksort
is O(n?)
4. Binary search using a linear linked list is

efficient.
(a) 1tand 2 (b) 2and 3
(c) 1tand 4 (d) 1Tand 3

The concept of order (Big O) is important

because

(a) Itcan be used to decide the best algorithm
that solves a given problem

(b) It determines the maximum size of a
problem that can be solved in a given
amount of time

(c) Itis the lower bound of the growth rate of
algorithm

(d) Both (a) and (b).

Which of the following is false?

nlogn
o) 100miogn -0 1991)
(&) 100nlogn=0{ =55

(b) y(logn) = O(loglogn)

(c) If0 < x<ythenn*=0(nY)
(d) 2n = O(nk)

The concatenation of two lists is to be
performed in O(1) time. Which of the following
implementations of a list should be used?

(a) Singly linked list

(b) Doubly linked list

ANSWER KEY

1. @) 2. (d) 3. (b) a.
9. (d) 10. (d) 1. (0 12.
17. (b) 18. (b) 19. (b) 20.
25. (c) 26. (c) 27. (d) 28.
33. (a) 34. (b)  35. (a) 36.
41.(b) 42 (d)  43. (@ 44,
49. (d)  50. (b

Q.46

Q.47

Q.48

Q.49

Q.50

(c)
(d)
(b)
(b)
(d)
(b)

(c) Circular doubly linked list
(d) Array implementation of list

Consider the following three claims:

1. (n + Kkm = ©(n™), where k and m are
constants.

2. 21 =02

3. 221 =0(2")

Which of these claims are correct?
(a) 1and 2 (b) 1and 3
(c) 2and 3 (d) 1,2and 3

The tightest lower bound on the number of
comparisons, in the worst case, for comparison
based sorting is of the order of

(a) n (b) n?

(c) nlogn (d) nlog2n

The time complexity of the following C function
is (assume n > 0)
int recursive (int n)
{
if(n==1)
return (1);
else
return(recursive(n-1)+ recursive(n-1));
(a) O(n) (b) O(nlog n)
(c) O(n?) (d) O2)

The time complexity of computing the
transitive closure of a binary relation on a set
of n elements is known to be

(a) O(n) (b) O(niogn)

(c) O(n*) (d) O(n?)

The minimum number of comparison required
to determine if an integer appears more than
n/2 times in a sorted array of n integer is

(a) ©(n) (b) ©(logn)

(c) ©(log®n) (d) ©(1)

» DATA STRUCTURES AND ALGORITHMS

5. (a) 6. (a) 7. (b) 8. (d)
13. (a) 14. (a) 15. (a) 16. (b)
21. (b) 22. (a) 23. (b) 24. (b)
29. (c) 30. (d) 31.(b) 32. (b)
37. (d) 38. (q) 39.(d) 40 (b)
45. (c) 46. (a) 47.(c) 48. (d)

163





