

Hindbookcenter

 сеा" ow Google Play
Hind Book Center \& Photostat

$$
\begin{gathered}
\text { MADE EASY } \\
\text { Mechanical Engineering } \\
\substack{\text { Toppers Handwritten Notes } \\
\text { STRENGTH OF MATERIAL } \\
\text { By-Krisnah Sir }} \\
\hline
\end{gathered}
$$

- Colour Print Out
- Blackinwhite Print Out
- Spiral Binding,\& Hard Binding
- Test Paper For IES GATE PSUs IAS, CAT
- All Notes Available \& All Book Availabie
- Best Quaity Handwritten Classroom Notes \& Study Materials
- IES GATE PSUs IAS CAT Other Competitive/Entrence Exams

Visit us:-www.hindbookcenter.com

Courier Facility All Over India
(DTDC \& INDIA POST)
Mob-9654353111

Hindbookcenter

 GET IT ON Google PlayALL NOTES BOOKS AVAILABLEALL STUDY MATERIAL AVAILABLE COURIERS SERVICE AVAILABLE

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX

ESE, GATE, PSUs BEST QUALITY TOPPER HAND WRITTEN NOTES MINIMUM PRICE AVAILABLE @ OUR WEBSITE

1. ELECTRONICS ENGINEERING
3.MECHANICAL ENGINEERING
5.INSTRUMENTION ENGINEERING
2. ELECTRICAL ENGINEERING
3. CIVIL ENGINEERING
4. COMPUTER SCIENCE

IES ,GATE , PSU TEST SERIES AVAILABLE @ OUR WEBSITE

* IES -PRELIMS \& MAINS
* GATE
> NOTE;- ALL ENGINEERING BRANCHS
$>$ ALL PSUs PREVIOUS YEAR QUESTION PAPER @ OUR WEBSITE

PUBLICATIONS BOOKS -

MADE EASY , IES MASTER ,ACE ACADEMY ,KREATRYX ,GATE ACADEMY, ARIHANT ,GK RAKESH YADAV, KD CAMPUS , FOUNDATION ,MC-GRAW HILL (TMH) ,PEARSON...OTHERS

HEAVY DISCOUNTS BOOKS AVAILABLE @ OUR WEBSITE

Shop No. 7 /8 Saidulajab Market Neb Sarai More,
Saket, New Delhi-30

Shop No: 46	F518	
100 Futa M.G. Rd	Near Kali Maa Mandir	
Near Made Easy	Lado Sarai	
Ghitorni, New Delhi-30	New Delhi-110030	

Website: www.hindbookcenter.com Contact Us: 9654353111
STREGTH OF MATERIAL
OR
$\frac{\text { MECHANICS OF MATERIAL }}{O R}$
MECHANICS OF SOLIDS
OR
MECHANICS OF STRUCTURE
OR
MECHANICS OF PERFECT ELASTIC BODIES

- $\sigma_{\text {induced }} \leq$ Elastic Limit \Rightarrow Perfect elastic Body
- $\sigma_{\text {induced }}>$ Yield Strength \Rightarrow Perfect Plastic-Body

Bending \rightarrow Two equal Parallel opposite
Pure Bending
\rightarrow ie.

$$
\text { Axial Load }=\text { Shear }=\text { Twisting }=\text { ZERO }
$$

Force Moment
Bending moment $=$ Constant

Torsional \rightarrow Two equal and opposite Parallel eccentric
couple

$$
\begin{aligned}
\text { Axial load }=\text { Shear force }= & \text { Bending }=\text { zero } \\
& \text { Moment }
\end{aligned}
$$

Torsional Moment = Constant

Pure Axial Load

$$
\begin{aligned}
& \sigma_{Q}=\frac{P}{A} ; \delta_{L}=\frac{P L}{A E} \\
& \delta V=\frac{P L}{E}(1-2 u)
\end{aligned}
$$

$$
F O S=\frac{\text { Failure stress }}{\text { Per }} \text { Stress }
$$

Aimofsom subject \rightarrow

Aim of SOM Subject is to derive expressions for Stress, strain and deformation under different loading conditions by using expermentally obtained elastic ptoperties like, Youngs modulus, Poissons ratio.

- Input data for strength of material problem
(I) Load
(ii) dimensions
(III) elastic Ptoperties like E and μ
- Parameters to be determined
(I) Sthess
(II) Strain, by using elastic constants (Properties)
(III) deformations, change in Length, change in cross-sectional dimensions and change in volume
- Assumptions made while deriving SOM equations

1. Perfect elastic member (Stress, sthain With in the elasticregion).
2. Homogeneous and Isotropic material is assumed.
3. Prismatic member is assumed.
4. self weight is neglected.
5. Static Load (gradually applied Load) is assumed.
6. Member is under Static equilibrium condition.

To obtain Safe dimensions in Presence of above mentioned assumptions factor of safety (FOS) should be used in design calcuations.

- Aim of Machine design

Ultimate aim of design is to develop a drawing in such a way that It should Perform its given functionity Satisfactorily. (that is without any failure)

- Stepsuin design of a component:
used

1. Specify the functionality of that component.
2. determination of Loads acting on that component during its functionality.
3. Selection of an appropriate shape.
4. Selection of an appropriate Material.
5. Calculation of dimensions by using strength of Material equation.
$I^{\text {st }}$ Method: By using strength \& rigidity Criterion
II Id method: By using Theory of failure (T.O.F.)
6. selection ofvmanufacturing process detail (i.e. ty Pe of manufacturim, appropriate
Surface finish, Limits and fits).
7. Part drawing should be Prepared for that Component.

$$
G_{\substack{\text { Young's }}}^{E=\frac{\text { Normal stress }}{\text { Longtitudamal strain }} \quad G=\frac{\tau}{\gamma}}
$$

Modulus


```
Strength \(\rightarrow\) Uniaxial
Theories of \(\rightarrow\) Uniaxial, biaxial, triaxial
failure
```

HOMOGENEOUS MATERIAL：－
A material is said to be Homogeneous when it exibits exhibits Same elastic properties at any Point in a given direction （that is elastic Properties are independent of Point）．

－ISOTROPIC MATERIAL：\rightarrow

－A material is said to be isotropic when it exhibits same elastic Properties in any direction at a given Point（i．e．elastic Properties are Independent of direction）
\rightarrow A Material is said to be both Homogeneous and Isotropic when it exhibits same elastic properties at any point and in any direction （ie．elastic Properties are independent of both point and direction）．
\rightarrow Every Homogeneous material need not beanisotopic material． and vice－verssa．but fum materials are both Homogeneous and isotropic
－Anisotropic Material \rightarrow（Composite material eg．fiber） A material is said to be Anisotropic when it exhibits direction dependent elastic poperies at a given Point．

保 Tach
＊．Advantage of Anisotropic material
－desirable Property can be achieve as Per requirement． －Higher strength to weight ratio

