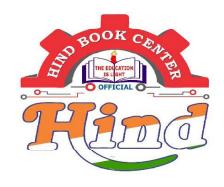


Hindbookcenter

Hind Book Center & Photostat


MADE EASY Mechanical Engineering

Toppers Handwritten Notes
MACHINE TOOL
By-Gunjan Sir

- Colour Print Out
- Blackinwhite Print Out
- Spiral Binding, & Hard Binding
- Test Paper For IES GATE PSUs IAS, CAT
- All Notes Available & All Book Available
- Best Quaity Handwritten Classroom Notes & Study Materials
- IES GATE PSUs IAS CAT Other Competitive/Entrence Exams

visit us:-www.hindbookcenter.com

Courier Facility All Over India (DTDC & INDIA POST)
Mob-9711475393

Hindbookcenter

ALL NOTES BOOKS AVAILABLEALL STUDY MATERIAL AVAILABLE COURIERS SERVICE AVAILABLE

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX

ESE, GATE, PSUs BEST QUALITY TOPPER HAND WRITTEN NOTES

MINIMUM PRICE AVAILABLE @ OUR WEBSITE

1. ELECTRONICS ENGINEERING

2. ELECTRICAL ENGINEERING

3.MECHANICAL ENGINEERING

4. CIVIL ENGINEERING

5.INSTRUMENTION ENGINEERING

6. COMPUTER SCIENCE

IES ,GATE , PSU TEST SERIES AVAILABLE @ OUR WEBSITE

- **❖ IES-PRELIMS & MAINS**
- **A** GATE
- > NOTE;- ALL ENGINEERING BRANCHS
- > ALL PSUS PREVIOUS YEAR QUESTION PAPER @ OUR WEBSITE

PUBLICATIONS BOOKS -

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX, GATE ACADEMY, ARIHANT, GK

RAKESH YADAV, KD CAMPUS, FOUNDATION, MC—GRAW HILL (TMH), PEARSON...OTHERS

HEAVY DISCOUNTS BOOKS AVAILABLE @ OUR WEBSITE

Shop No.7/8
Saidulajab Market
Neb Sarai More,
Saket, New Delhi-30

Shop No: 46 100 Futa M.G. Rd Near Made Easy Ghitorni, New Delhi-30

F518 Near Kali Maa Mandir Lado Sarai New Delhi-110030

Website: <u>www.hindbookcenter.com</u> Contact Us: 9711475393

MANUS + FACTUS

To make by

Hand

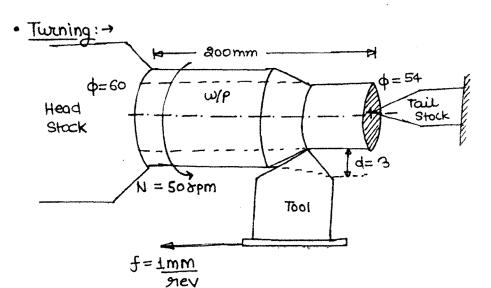
New goains are forming

" MACHINING Material Removal Process: 7

-> Geometry, Application Single Point

Cutting tool «

Traditional Multi Point&


Cutting tool

- · Twining.
- Girlinding
- Milling

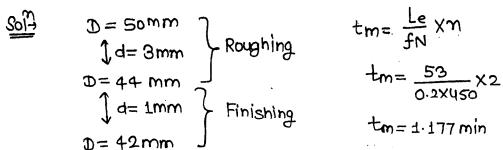
Broaching etc. mx (single Point)
Cutting
tool

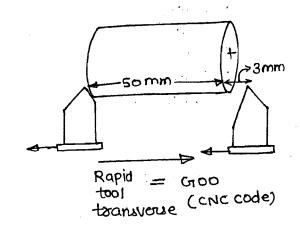
Non-Traditional

- ECM
- EBM
- LBM
- USM
- WIM etc

Axial Speed Where
$$L_e = \frac{200}{1 \times 50} = 4 \text{min}$$

$$L_e = \frac{200}{1 \times 50} = 4 \text{min}$$


$$L_e = \frac{1}{1 \times 50} = 4 \text{min}$$


tangential valuity

V= Φ(D,N) TTDN M min 1000

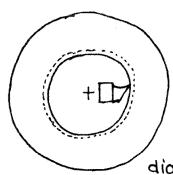
Evaluate the time of machining a Brass bar of dia 50 mm and Length 50mm, final dia 15 42 mm. Spinale speed is 450 rpm feed 0.2 mm/rev., depth of cut 3 mm and Length of approach is 3 mm.

3000000

Que-> Find the machining time for a mild steel Borr of diameter 52 mm which is to be reduced to 44 mm dia along the Length of 200 mm with an approach allowance of 5 mm. Cutting Parameter arie as follows

Roughing Pass: - $V_{max} = 35 \, \text{m/min}$, $d = 3 \, \text{mm}$, $f = 0.3 \, \text{mm/rev}$. Finishing Pass: - $V_{max} = 50 \, \text{m/min}$, $d = 1 \, \text{mm}$, $f = 0.1 \, \text{mm/rev}$.

$$V = \frac{110N}{1000} \frac{M}{Min}$$


Roughing

$$t_{m} = \frac{205}{0.3 \times 214.24} = 3.189 \text{min}$$

finishing

$$N = \frac{50 \times 1000}{11 \times 46} = 345.9 \text{ gpm}$$

$$tm = \frac{205}{0.1 \times 346} = 5.92 \text{ min}$$

Hollow Cylinder

Internal Turning > " Bosting"

dia enlargement

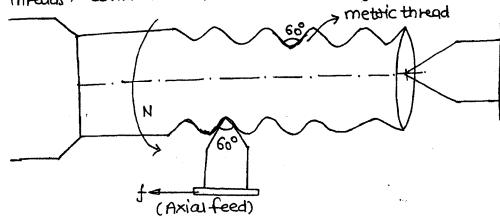
time of machining

$$\frac{1^{8t} \text{ Pass}}{N = \frac{30 \times 1000}{11 \times 32}} = 298.41 \text{ apm}$$

$$t_1 = \frac{60}{0.1 \times 29.8.41} = 3.35 \text{ min.}$$

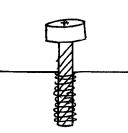
$$N = \frac{30 \times 1000}{11 \times 36} = 265.25 \text{ spm}$$

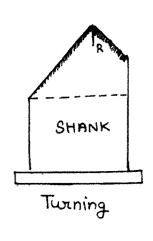
$$t_1 = \frac{100}{0.1 \times 265.25} = 3.77 \text{ min}$$

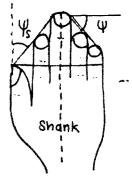

$$N = \frac{30 \times 1000}{11 \times 39} = 244.85 \text{ m}$$

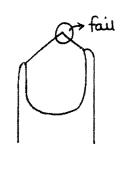
$$t_3 = \frac{100}{0.1 \times 244.85} = 4.08 \, \text{min}$$

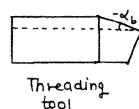
NOTE: → if V is given, Calculate N at every Pass.

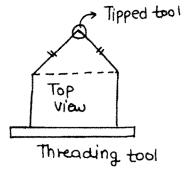

Threading 3>


Threads > conitinuous form of hecical sidges.




It is a continous form of neucous idges. Produced over a Cylinder or Frustum Externally or Internally used for motion transmission and fastening two objects.


- ·Threads can be Produced by:
- (i) Thread chasing (Lathe)
- (ii) Tapping (druilling machine)
- (iii) Helical milling (Form milling)
- (iv) Goinding
- (V) Thread Rolling (Forming)



*Thread chesing:>

- . The arrangement is very similar to turning operation
- · High quality external threads are Produced tools used are:
 - (i) Single Point form tools or multi-Point form tools

Form tool: > Shape of the tool Cooresponds to the Profile to be cut or Produced.

"इट्ह्याँद्यारी नागिन"

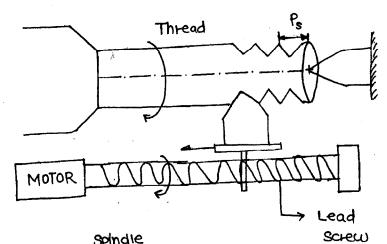
Single Start threading $\Rightarrow f = 1.P$ Double Start threading $\Rightarrow f = 2.P$

Tilly. No. of throeads = 5/cm

$$p = \frac{1}{5}cm = 0.2cm$$

P= amm

Q For a double Start threading if Pitch value is 2mm. then feed in (mm)


Ans $f = 2 \times 2 = 4 \text{mm}$

Q: To Produce a thread along a tocm long Cylindrical workpiece GIFTE with approach and overetravel 0.5cm each, spindle speed is 88 rpm & No of threads per cm is equal to 3.

Find the time of threading if No of required for M.s. = 7

 $P = \frac{1}{9}$ cm = 0.333cm = 3.33mm Le= 15+0.5+0.5 = 16cm N = 888pm

$$t_{m} = \frac{16}{\frac{1}{3} \times 88} \times 7 = 3.81 \text{ minute}$$

Screw Thread >> !

Ns = 1000pm

Ps = 2mm/tev.

 $M_S = 1$ No of start

Lead thread Screw > Tool

Nr = 3002bw

PL = 1mm/rev.

 $N_s P_s m_s = N_i P_s m_L$

ML= 1 No. of Start