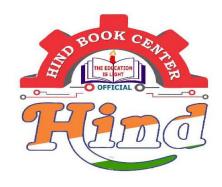


Hindbookcenter

Hind Book Center & Photostat


MADE EASY Mechanical Engineering

Toppers Handwritten Notes MACHINE DESIGN By-Padmesh Sir

- Colour Print Out
- Blackinwhite Print Out
- Spiral Binding, & Hard Binding
- Test Paper For IES GATE PSUs IAS, CAT
- All Notes Available & All Book Available
- Best Quaity Handwritten Classroom Notes & Study Materials
- IES GATE PSUs IAS CAT Other Competitive/Entrence Exams

Visit us:-www.hindbookcenter.com

Courier Facility All Over India (DTDC & INDIA POST) Mob-9654353111

Hindbookcenter

ALL NOTES BOOKS AVAILABLEALL STUDY MATERIAL AVAILABLE COURIERS SERVICE AVAILABLE

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX

ESE, GATE, PSUs BEST QUALITY TOPPER HAND WRITTEN NOTES

MINIMUM PRICE AVAILABLE @ OUR WEBSITE

1. ELECTRONICS ENGINEERING

2. ELECTRICAL ENGINEERING

3.MECHANICAL ENGINEERING

4. CIVIL ENGINEERING

5.INSTRUMENTION ENGINEERING

6. COMPUTER SCIENCE

IES ,GATE , PSU TEST SERIES AVAILABLE @ OUR WEBSITE

- ❖ IES –PRELIMS & MAINS
- ◆ GATE
- > NOTE;- ALL ENGINEERING BRANCHS
- > ALL PSUS PREVIOUS YEAR QUESTION PAPER @ OUR WEBSITE

<u>PUBLICATIONS BOOKS -</u>

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX, GATE ACADEMY, ARIHANT, GK

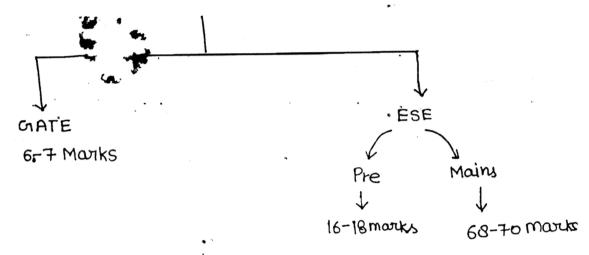
RAKESH YADAV, KD CAMPUS, FOUNDATION, MC-GRAW HILL (TMH), PEARSON...OTHERS

HEAVY DISCOUNTS BOOKS AVAILABLE @ OUR WEBSITE

Shop No.7/8 Saidulajab Market Neb Sarai More, Saket, New Delhi-30 Shop No: 46 100 Futa M.G. Rd Near Made Easy Ghitorni, New Delhi-30

F518 Near Kali Maa Mandir Lado Sarai New Delhi-110030

Website: www.hindbookcenter.com
Contact Us: 9654353111

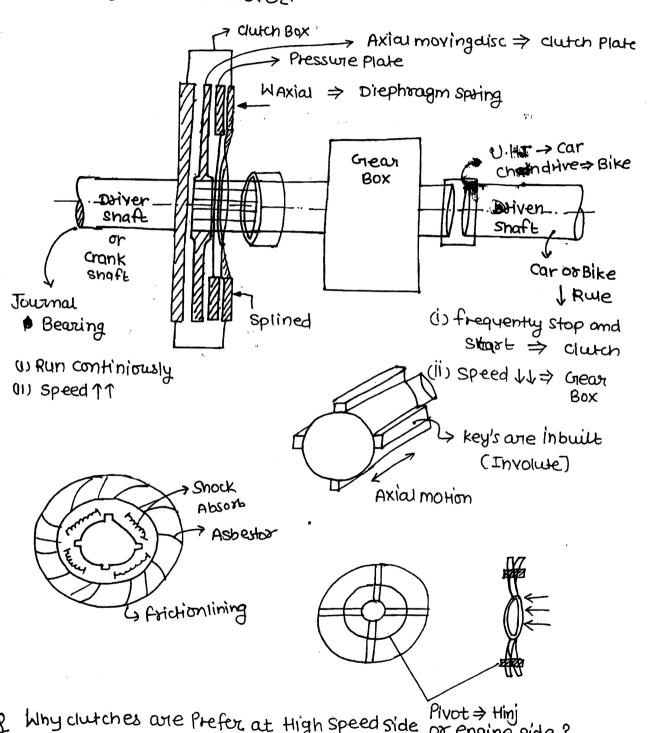

MACHINE DESIGN (MD)

MACHINE ELEMENT DESIGN (MED)

Or)

DESIGN OF MACHINE ELEMENT (DME)

(1) clutches


- (A) Brakes
- MI) Gear ⇒ (Spur Gear)
- (IV) Riveted Joint
- (v) Bolted Joint
- (Vi) Welded Joint
- (Vii) Bearing
- Wiii) Fatigue design of snaft
- (ix) Spring
- (X) Design of flywheel [only ESE]

clutch:>

It is defined as a machine element which is use to engage and disengage driver and the driven snaft at the Wheel Without Stopping the Prime movez.

1

1

Q Why clutches are Prefer at High Speed side or engine side?

Power = Tf XW 111 Ans > High speed

Tf > Required torque Less Clutch design simple -> To minimize wear and Losses clutch @ Low speed side Power = Tf. W +++ (Torque Required will be more) clutch Wear friction is resposible [JWU] for wear wear of v OLD CLUTCH NEW CLUTCH (uniform wear होता हैं!) (Uniform wear नहीं होता है) 4 Linear velocity MEOUT & Wapsing friction 4 Pressure nonuniform Pind = uniform pressure Pressure Perfect Engage नहीं होता है Perfect Engage Pressure & = constant > P.r=C wear friction = woutant Ro -> outer radius of Uning uniform wear Theory (UNT. dr Ri→Innertadius of Lining 211 8P.dr = [dw find = Pind = P Euniform Pressure New 7 Clutch ano.dr.P= (dw Pind = anr(RoRi For Safe Cond Pind = Pei @ Pallow t-t1>t-t1, t1-t2=t For safe cond (Pind)max= ATTRi(Ro-Ri) (Pind)max = Pper 1 Pind = W Wmax = TT (RoRi) PART -> Strength of New Lining interms of

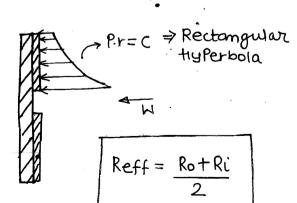
 $R_{eff} = \frac{2}{3} \left[\frac{R_0^3 - R_1^3}{R_0^2 - R_1^2} \right]$

Old clutch
$$\int dT_f = \int R \Pi \mu \cdot P \cdot P^2 dP$$

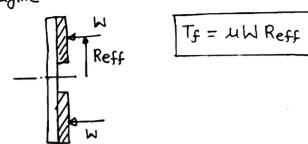
$$T_f = R \Pi \mu \cdot P \cdot P^2 dP$$

$$R_i$$

$$T_f = \Pi \mu \cdot C \cdot (R_0^2 - R_i^2)$$


$$C = \frac{W}{2\pi (R_0 - R_i)}$$

$$T_f = \mu \cdot W_{max} \cdot \frac{(R_0 + R_i)}{2}$$


$$T_f = \mu \cdot W_{max} \cdot \frac{(R_0 + R_i)}{2}$$

$$T_f = \mu \cdot W_{max} \cdot \frac{(R_0 + R_i)}{2}$$

· Pind =
$$\frac{W}{2\pi + (R_0 - R_i)}$$

safe condition
· $(P_{ind})_{max} \leq P_{Per}$

Imagine

It is an imagamary radius for that we can assume the total friction force or the total Load is Acting

NOTE:

- 1. clutch ⇒ Always assume → old clutch Hence clutches are design by uniform wear Theory (UWT)
- 2. Always Tf (UPT) is greater than Tf (UWT)

$$\frac{\partial}{\partial ue} \rightarrow \frac{14|uB| cn-5}{R_0 = 50mm}$$

$$Ri = 30mm$$

$$U = 0.4$$

$$P_{ind} = 3mPa$$

$$T_f = \frac{2}{3} \times 0.4 \times 3.14 \times 2 \times \left[(50)^3 - (20)^3 \right]$$

$$T_{f=196 Nm}$$

Que > 6/wB|cn-5

$$5000 = \frac{2}{3} \mu \pi P_{er} (R_0^3 - R_i^3) \times \frac{2 \times \pi \times 2000}{60}$$

$$5000 = \frac{2}{3} \times 0.25 \times 3.14 \times 10^{6} \left[R_{0}^{3} - (0.025)^{3} \right] \times \frac{211 \times 2000}{60}$$

Q: A single Plate clutch use to transmit Power in given radial distance space. Find out the Ratio of Outerdia. to inner diameter for the Liming to transmit max. Power

Solf
$$P = \frac{aiTN}{60} \times uiT P_{Per} (R_0^2 - R_i^2) R_i$$

Given Radial Space $\Rightarrow fix$
 $T_f = f(R_i) coniy$
 $\frac{dT_f}{dR_i} = 0 \Rightarrow R_0^2 - 3R_i^2 = 0$

For driven

$$T_2 = T_2 \alpha_2$$

Similary

$$\frac{d\theta_2}{dt} = +\frac{T_2}{T_2}t + \omega_2 \rightarrow (2)$$

$$\frac{d\theta_1}{dt} = \frac{d\theta_2}{dt}$$

$$-\frac{T_1}{T_1}t + \omega_1 = \frac{T_2}{T_2}t + \omega_2$$

if TB and TE are Not Given

$$T_1 = T_2 = T_f = T$$

$$t = \frac{(\omega_1 - \omega_2) I_1 I_2}{(I_1 + I_2) T}$$

If Driver Inentia (I, is Not given

$$t = \frac{(\omega_1 - \omega_2) I_2}{T}$$

一 Que > T3/WB/ch-5

motor -> flywheel

(Driver)

$$I_2 = m_2 k_2^2 = 0.3584 kg - m^2$$

Let us as 8 ume driver Speed constant > I, > ∞

$$t = \frac{(\omega_1 - \omega_2)I_2}{T}$$

$$\omega_1 = \frac{2\pi N_1}{60} = 94.24 \text{ rad/s}$$

$$\omega_2 = 0$$

$$t = \frac{(\omega_1 - \omega_2) I_2}{T}$$

$$t = \frac{(94.24 - 0)(3584)}{(3584)}$$

$$t = \frac{(94.24-0)(3584)}{T}$$