

Hindbookcenter

Hind Book Center & Photostat

MADE EASY Mechanical Engineering

Toppers Handwritten Notes
I C Engine
By Aakash sir

- Colour Print Out
- Blackinwhite Print Out
- Spiral Binding, & Hard Binding
- Test Paper For IES GATE PSUs IAS, CAT
- All Notes Available & All Book Available
- Best Quaity Handwritten Classroom Notes & Study Materials
- IES GATE PSUs IAS CAT Other Competitive/Entrence Exams

visit us:-www.hindbookcenter.com

Courier Facility All Over India (DTDC & INDIA POST)
Mob-965435311

Hindbookcenter

ALL NOTES BOOKS AVAILABLEALL STUDY MATERIAL AVAILABLE

COURIERS SERVICE AVAILABLE

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX

ESE, GATE, PSUs BEST QUALITY TOPPER HAND WRITTEN NOTES MINIMUM PRICE AVAILABLE @ OUR WEBSITE

- 1. ELECTRONICS ENGINEERING
- 2. ELECTRICAL ENGINEERING
- 3.MECHANICAL ENGINEERING
- 4. CIVIL ENGINEERING
- **5.INSTRUMENTION ENGINEERING**
- 6. COMPUTER SCIENCE

IES ,GATE , PSU TEST SERIES AVAILABLE @ OUR WEBSITE

- ❖ IES –PRELIMS & MAINS
- **❖** GATE
- > NOTE;- ALL ENGINEERING BRANCHS
- > ALL PSUs PREVIOUS YEAR QUESTION PAPER @ OUR WEBSITE

PUBLICATIONS BOOKS -

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX, GATE ACADEMY, ARIHANT, GK

RAKESH YADAV, KD CAMPUS, FOUNDATION, MC – GRAW HILL (TMH), PEARSON...OTHERS

HEAVY DISCOUNTS BOOKS AVAILABLE @ OUR WEBSITE

Shop No.7/8
Saidulajab Market
Neb Sarai More,
Saket, New Delhi-30

Shop No: 46 100 Futa M.G. Rd Near Made Easy Ghitorni, New Delhi-30

F518 Near Kali Maa Mandir Lado Sarai New Delhi-110030

Wobcita, www.bindbookaantar.com

IC Engine

(1) Air standard Cycle

(a) otto cycle

(b) Diesel cycle

(c) Dual cycle

(2) Thermo chemistry

(3) Testing of IC Engine

Reference Book

V. baneshan

made Fasy theory book

(1) Stroke Volume
$$V_8 = \frac{\pi}{4} 0^2 \chi L$$

(2) clearance Ratio
$$c = \frac{V_c}{V_s}$$

Note * Stroke length = 2 x crank radius

* piston rings made up of cast Iron.

 $\chi(0) = L_c + r_c - \left[r_c(0)0 + \sqrt{L_c^2 - r_c^2 \sin^2 0} \right] = f(0)$ x= Lc+ra-fre+Lc] x = Lct rc- 1-rc+ /4c,2+0 x=2%=L => Basic Working of IC Engine [4- STroke] at Patm Praccym Pay < Patm (GHy) BDC Chemical Energy Py = Patm Suction Stroke Heat addition Py > Patm lompres ston Heat

Stroke

addition

Py Patm ~ 56art

power

Note [Heat addition] v

Pay

Tdx

 $WD = \int_{i}^{f} P_{cy}(Ap dx)$ $WD = \int_{i}^{f} P_{cy} dv$ Cycle i

Suction - Compression - power -> Exhaust

* After power stroke, as exhaust Value is open major exhaust gases will escape out of the cylinder at BDC only and it is termed at heat rejection at constant volume.

* After heat sejection the lemaining exhaust gases will be thrown out of the cylinder as piston displaces from BDC to TDC And this process is termed as exhaust stroke.

Air Standard Gycles

- + Air standard Assumptions:
 - (1) Air is only working fluid. (5) all the processes are internally reversible. (2) perfect gas
 - (3) Ideal gas equation PV = mRT
 - (4) G, Kr and & Should be Constant.

$$G - G = R$$
 $\frac{G}{G} = \gamma$

#1 process 1-2 [Adiabatic Compression] PYY=C

Isentropic Compression

Adia batic process (pv?=c) + Rev. process (pv = mRT)

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{2}} = \left(\frac{V_1}{V_2}\right)^{\gamma-1}$$

#2 process 2-3 [Heat Addition V= Const]

$$do = dv + dxo$$

$$\Rightarrow do = dv = + ve$$

$$V = Const$$

$$P \propto T + T$$

$$V = f(T)$$

$$V = T$$

$$\frac{P_3}{P_2} = \frac{T_3}{T_2}$$

#3 process 3-4 [Expansion]

Isentropic Expansion (pvl=c)

3

3

9

99

3

9

3

9

9

*9

$$W_{E} = \frac{P_{3} V_{3} - P_{4} V_{4}}{Y - L}$$

$$\frac{T_{3}}{T_{4}} = \left(\frac{P_{3}}{P_{4}}\right)^{\frac{Y - L}{Y}} = \left(\frac{V_{4}}{V_{3}}\right)^{\frac{Y - L}{Y}}$$

process lation: - for any process if is defined as the higher value to the lower value for pressure, volume and temp.

Compression

$$r_p = \frac{P_2}{P_1}$$

$$\left[Y = \frac{V_i}{V_2} \right]$$

$$\gamma_{T} = \frac{T_{2}}{T_{1}}$$

Expansion

$$r_p = \frac{P_3}{P_4} \rightarrow mqx$$

$$r_e = \frac{V_4}{V_3}$$

$$r_{e,T} = \frac{T_3}{T_4} \Rightarrow mqx$$

*
$$\gamma = \frac{V_1}{Y_2} = \frac{V_S + V_C}{V_C} = 1 + \frac{V_S}{V_C} = 1 + \frac{1}{(V_C/V_S)}$$

* process 1-2

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma}{\gamma-1}} = \left(\frac{\gamma_1}{\gamma_2}\right)^{\frac{\gamma}{\gamma-1}} = \left(\gamma\right)^{\frac{\gamma}{\gamma-1}}$$

$$\Rightarrow \left[T_{2} = T_{1}(\gamma)^{\gamma-1} \right]^{*}$$

$$\Rightarrow P_2 = P_1(r)^2$$

$$\frac{1}{2} \int_{0}^{4} \int_{0}^$$

Const (air stand assumption)

$$\eta_{6} = 1 - \frac{T_{1}}{T_{2}} \left(\frac{T_{4}/T_{1} - 1}{T_{3}/T_{2} - 1} \right)$$

Note

$$\frac{T_3}{T_1} = x^{\gamma-1}$$

$$\frac{T_3}{T_4} = \left(\frac{V_4}{V_3}\right)^{\gamma-1} = \left(x_e\right)^{\gamma-1}$$

$$\frac{T_3}{T_4} = \left(\frac{V_4}{V_3}\right)^{\gamma-1} = \left(x_e\right)^{\gamma-1}$$

$$\Rightarrow \frac{T_2}{T_1} = \frac{T_3}{T_4} \Rightarrow \frac{\boxed{T_4} - \frac{T_3}{T_2}}{\boxed{T_1}} \Rightarrow \frac{T_2 T_4}{\boxed{T_1}} = \frac{T_1 T_3}{\boxed{T_2}}$$

Now
$$\gamma = 1 - \frac{1}{T_g} = 1 - \left(\frac{1}{T_g/T_i}\right)$$

Air Standard efficiency for otto cycle.