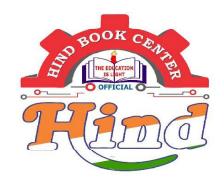


Hindbookcenter

Hind Book Center & Photostat


MADE EASY Mechanical Engineering

Toppers Handwritten Notes
Engineering Mechanics
By-Mudit Raj Sir

- Colour Print Out
- Blackinwhite Print Out
- Spiral Binding, & Hard Binding
- Test Paper For IES GATE PSUs IAS, CAT
- All Notes Available & All Book Available
- Best Quaity Handwritten Classroom Notes & Study Materials
- IES GATE PSUs IAS CAT Other Competitive/Entrence Exams

visit us:-www.hindbookcenter.com

Courier Facility All Over India (DTDC & INDIA POST)
Mob-9711475393

Hindbookcenter

ALL NOTES BOOKS AVAILABLEALL STUDY MATERIAL AVAILABLE COURIERS SERVICE AVAILABLE

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX

ESE, GATE, PSUs BEST QUALITY TOPPER HAND WRITTEN NOTES

MINIMUM PRICE AVAILABLE @ OUR WEBSITE

1. ELECTRONICS ENGINEERING

2. ELECTRICAL ENGINEERING

3.MECHANICAL ENGINEERING

4. CIVIL ENGINEERING

5.INSTRUMENTION ENGINEERING

6. COMPUTER SCIENCE

IES ,GATE , PSU TEST SERIES AVAILABLE @ OUR WEBSITE

- **❖ IES-PRELIMS & MAINS**
- **A** GATE
- > NOTE;- ALL ENGINEERING BRANCHS
- > ALL PSUS PREVIOUS YEAR QUESTION PAPER @ OUR WEBSITE

PUBLICATIONS BOOKS -

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX, GATE ACADEMY, ARIHANT, GK

RAKESH YADAV, KD CAMPUS, FOUNDATION, MC—GRAW HILL (TMH), PEARSON...OTHERS

HEAVY DISCOUNTS BOOKS AVAILABLE @ OUR WEBSITE

Shop No.7/8
Saidulajab Market
Neb Sarai More,
Saket, New Delhi-30

Shop No: 46 100 Futa M.G. Rd Near Made Easy Ghitorni, New Delhi-30

F518 Near Kali Maa Mandir Lado Sarai New Delhi-110030

Website: <u>www.hindbookcenter.com</u> Contact Us: 9711475393

ENGINEERING - MECHANICS

GATE SYLLABUS. Free body diagrams and Equilibrium

- · Trussis and Framus
- Vistual Work MUDIT RAJ SIR +917840072497
- · Kinematics and Dynamics of particles & Rigid bodies in plane motion
- · Impulse and Momentum (linear and angular) and Energy formulations; Callisions
- · Friction in Belt-Ruley, Clutch of Brakes, Sorew Jack
- · SHM & Vibrations (Civil Engineering)
- · Lagrange's Equation

Mudit Raj Sir +917840072497 TELEGRAM: https://t_me/muditrajsirgroup Watch this class:https://youtu.be/AD8pMYWaWFM

Part(I) (STATICS)

- · Equilibrium of Forces · Virtual Work
- · Fruition (statics) · cog/com/centroides
- · Truss & Frames · Area & Moss MoI

Part (II) (OYNAMICS) (NEW SYLLABUS)

- · Pure Translation Mation · Friction in Belt-Rully
- Wark, Energy & Power Friction in Screw Jack Friction in Clutch & Brakes

- · Circular Mation · General Plane Motion
- Circular plane.
 Rotational Mation
 Rolling Friction
 SHM & Vibrations

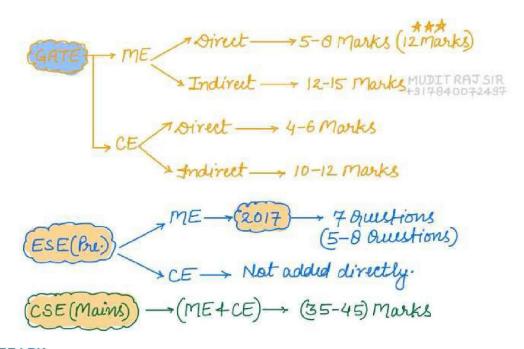
 - - · Lagrange's Equation

REFERENCE BOOKS: 1-S.S. Bhavikatti *** (Basic)

MUDIT RAJ SIR
+917840072497

2-A. Nelson *** (IAS)

4-Dr. U.C. Jindal **


5-S. Timashenko

6-D.H. Young

7-Sukumar Pati°

8-J.V. Rao

Mudit Raj Sir +917840072497 TELEGRAM: https://t_me/muditrajsirgroup Watch this class:https://youtu.be/AD8pMYWaWFM

ENGINEERING		MECHANICS		
(CHAPTER/TOPIC)		(GATE-PYQ)		
O Static Equilibrium	_	7	(10-12)	Questions
2 Friction	-	-	(18-20)	Questions
3 Truss		→	(8-10)	Questions
4 Virtual Work			(3-4)	Questions
6 M.O.I.	-	-	(2-3)	Questions
		→	(14-16)	Questions
@ Belt & Pulleys	_	\longrightarrow	(8-9)	Questions
1 Wark, Energy & Powe	Jz -	\longrightarrow	(3-4)	Questions
9 Impact 4 Callision				Questions
@ Circular Mation	-		(2-3)	Questions
1 Rotational Mation	-	-	(12-14)	Questions
(2) Rolling Motion				Questions

Mudit Raj Sir +917840072497 TELEGRAM: https://t.me/muditrajsirgroup Watch this class:https://youtu.be/AD8pMYWaWFM

ENGINEERING MECHANICS

Definition: It is the study of state of the rigid body; under the application of external forces.

Study: It is the process of observation by an observer about on object/system with respect to a frame of reference.

Physical Quantities: These are the physical characteristics of the body which defines the state of the body.

@Fundamental PDs: M.L.T

(b) Durived PQ : A, V, V, a, F, p MUDITRAJ SIR

(c) scalar Pas: m, A, work -> Have only magnitude

(2) one-direction

10 A=î

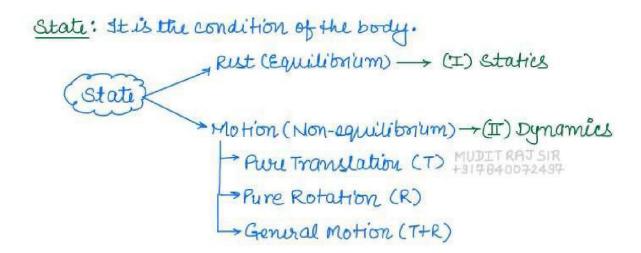
** (3) Must follow the vector-laws

* * stress \$\frac{1}{2} \tag{2nd ordes} \tag{2nd ordes} \tag{2nd ordes}

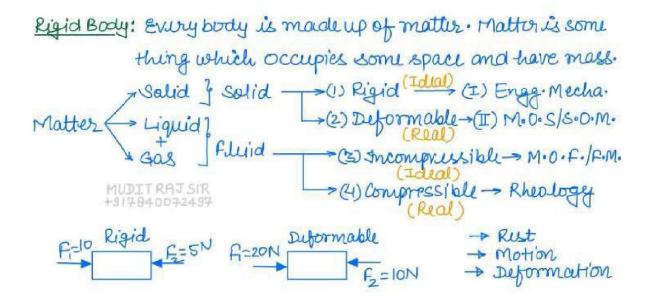
* * M.O.I. Ixx, Iyy, Ixy -> Scalar, Tensor etc

Mudit Raj Sir +917840072497 TELEGRAM: https://t_me/muditrajsirgroup Watch this class:https://youtu.be/AD8pMYWaWFM

* * striss \$x , \$xy , \$yy , Try > Tensor Quantities * * M.O.I. Ixx, Iyy, Ixy -> Scalar, Tensor etc Tensor: This is broadur torm, scalar and vector can be defined as special cases of tensor as, a scalar


(1) Zero-order/zero-Rank Tensor -> Magnitude + zero-direction

> Vector

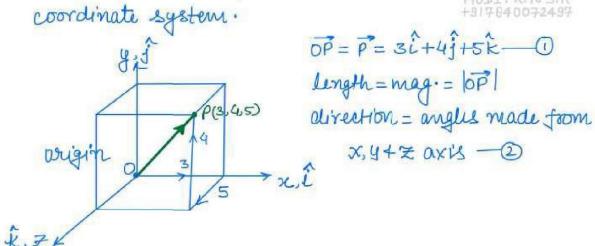

(2) First-order/First-Rank Tensor -> Magnitude + 1-direction

> Tensor

(3) Sword-order/Sword-Rank Tensor -> Magnitude + 2-direction Mudit Raj Sir +917840072497 | TELEGRAM: https://t.me/muditrajsirgroup | YOUTUBE: https://www.youtube.com/c/COMPTRACK

Mudit Raj Sir +917840072497 TELEGRAM: https://t_me/muditrajsirgroup Watch this class:https://youtu.be/AD8pMYWaWFM

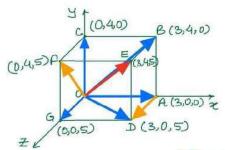
* VECTORS*


- * Representation of vectors can be done by two methods
 (1) Graphical Method
 (2) Analytical Method
- * Graphical Method: Vectors can be supresented by arrows.


* For complete study a suference system must be there

Mudit Raj Sir +917840072497 TELEGRAM: https://t.me/muditrajsirgroup Watch this class:https://youtu.be/AD8pMYWaWFM

* Cartisian Coordinate system: Assume whole world is 3-0



Distance between any two points: for 2-0 case:

Mudit Raj Sir +917840072497 TELEGRAM: https://t_me/muditrajsirgroup Watch this dass:https://youtu.be/AD8pMYWaWFM

Vectors in 3-0 system:

$$\overrightarrow{OR} = 3\hat{i} + 0\hat{j} + 0\hat{k} = 3\hat{i} = 1 - \theta$$

$$\overrightarrow{OC} = 0\hat{i} + 4\hat{j} + 0\hat{k} = 4\hat{j} = 1 - \theta$$

$$\overrightarrow{OG} = 0\hat{i} + 0\hat{j} + 5\hat{k} = 5\hat{k} = 1 - \theta$$

$$\overrightarrow{OD} = 3\hat{i} + 0\hat{j} + 5\hat{k} = 3\hat{i} + 5\hat{k} = 2 - \theta$$

$$\overrightarrow{OB} = 3\hat{i} + 4\hat{j} + 0\hat{k} = 3\hat{i} + 4\hat{j} = 2 - \theta$$

$$\overrightarrow{OE} = 3\hat{i} + 4\hat{j} + 5\hat{k} = 3\theta$$

$$\overrightarrow{AD} = (5-3)\hat{i} + (0-0)\hat{j} + (5-0)\hat{k} = 5\hat{k} = 1D$$

$$\overrightarrow{OC} = (0-0)\hat{i} + (4-0)\hat{j} + (5-0)\hat{k} = 4\hat{j} + 5\hat{k} = 2-40$$

general:
$$\vec{R} = \chi \hat{i} + y \hat{j} + Z \hat{k} - 0$$
 (3-0)

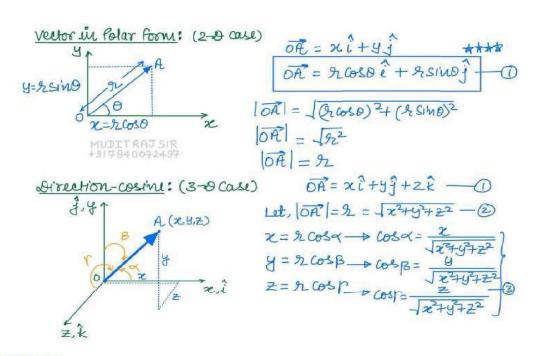
MUDIT RAJSIR $\vec{A} = \chi \hat{i} + y \hat{j} - 2$ (2-0)

 $\vec{A} = \chi \hat{i} + y \hat{j} - 2$ (2-0)

 $\vec{A} = \chi \hat{i} + y \hat{j} - 3$ (1-00)

Analytical Approach:
$$f(x) = (x) = x(x) + y(x) + z(x) = 0$$

Magnitude: $f(x) = (x) = x(x) + y(x) + z(x) = 0$

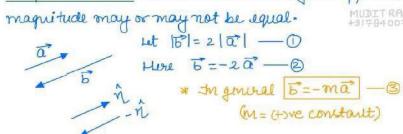

* $f(x) = (x) = x(x) + y(x) + z(x) = 0$

MUDIT RAJ SIR + 917840072497

Magnitude unit vector

... $f(x) = f(x) = (x) + (x)$

Mudit Raj Sir +917840072497 TELEGRAM: https://t_me/muditrajsirgroup Watch this dass:https://youtu.be/AD8pMYWaWFM



Mudit Raj Sir +917840072497 | TELEGRAM: https://t_me/muditrajsirgroup | Watch this dass:https://youtu.be/AD8pMYWaWFM

O Parallel vectors: Having same direction but may be differing the magnitude. Let $|\vec{b}| = 0$ | $|\vec{b}| = 2 |\vec{a}|$ $|\vec{a}| = 4$ | $|\vec{b}| = 2\vec{a} - 0$ * $\vec{b} = b \cdot \hat{b} = b \cdot \hat{n}$? $\hat{a} = \hat{b} = \hat{n}$ $\vec{a} = a \cdot \hat{a} = a \cdot \hat{n}$

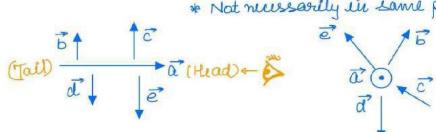
Typus of vectors:

* $\vec{B} = (2)a \cdot \hat{\eta} = 2\vec{a} - 2$ * In general $\vec{B} = m\vec{a} - 3$ m = (3calar or constant) 1 Antiparallel Vector: When directions are just opposite, and

© Equal Vectors: When both magnifude + direction on same.

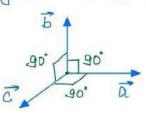
□=□

MUDIT RAJ SIR
+817840072497



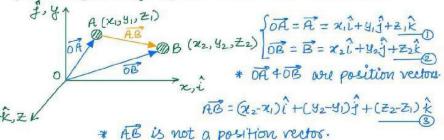
@ Opposite vectors: When magnifeedl is same but direction

is opposite called opposite vectors. $\vec{a} = \vec{b}$ or $\vec{b} = -\vec{a}$ —@


Mudit Raj Sir +917840072497 | TELEGRAM: https://t.me/muditrajsirgroup | Watch this class: https://youtu.be/dnpiJhriSJw

6 Normal vectors: When directions are mutually purpendi--cular, may or may not equal in magnitude. * Not necessarily in same plane.

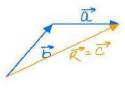
6 Orthonormal Vectors: When any 3- vectors are mutually


perpendicular to each other. MUDIT RAJ SIR +917840072497

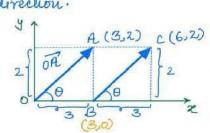
@ Null/zero vector: A vector with zero magnitude and having no-specific direction called zero-vector. $\vec{a} = a \cdot \hat{a}$ — \vec{a} — \vec{a} — \vec{a} No-specific direction

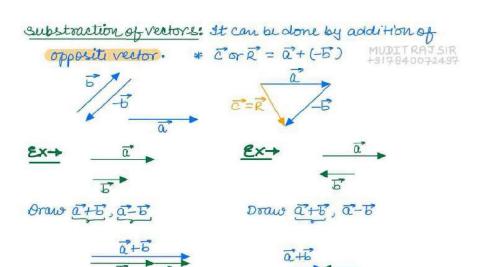
* As both head and tail will come at same point so direction can not be predected/detormine.

* B Position-Vector: Any vector connecting the body at any position from origin point called 'Position-vector?

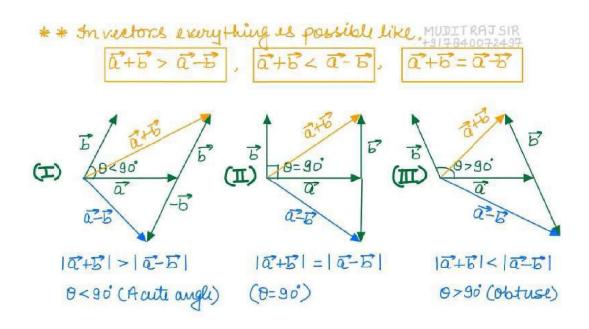


COMPTRACK Mudit Raj Sir +917840072497 | TELEGRAM: https://t.me/muditrajsirgroup | Watch this class: https://youtu.be/dnpiJhriSJw


* Addition of vectors *


* When any two vectors are added their resultant is obtained.

MUDIT RAJ SIR
+817840072497


* * Translational Property of vectors: "Vectors can be translated in the space without changing their mag. 4 direction".

Mudit Raj Sir +917840072497 TELEGRAM: https://t.me/muditrajsirgroup Watch this class:https://youtu.be/dnpiJhriSJw

<u>a²-b²</u> -<u>b</u>

